Oulier Analysis Using Frequent Pattern Mining – A Review

نویسنده

  • Shanker Singh
چکیده

An outlier in a dataset is an observation or a point that is considerably dissimilar to or inconsistent with the remainder of the data. Detection of such outliers is important for many applications and has recently attracted much attention in the data mining research community. In this paper, we present a new method to detect outliers by discovering frequent patterns (or frequent item sets) from the data set. The outliers are defined as the data transactions that contain less frequent patterns in their item sets. We define a measure called FPOF (Frequent Pattern Outlier Factor) to detect the outlier transactions and propose the Find FPOF algorithm to discover outliers. The experimental results have shown that our approach outperformed the existing methods on identifying interesting outliers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mining, Pruning and Visualizing Frequent Patterns for Temporal Event Sequence Analysis

Integrating frequent pattern mining with interactive visualization for temporal event sequence analysis poses many interesting research questions and challenges. We review and reflect on some of these challenges based on our experiences working on event sequence data from two domains: web analytics and application logs. These challenges can be organized using a three-stage framework: pattern mi...

متن کامل

Efficient Analysis of Pattern and Association Rule Mining Approaches

The process of data mining produces various patterns from a given data source. The most recognized data mining tasks are the process of discovering frequent itemsets, frequent sequential patterns, frequent sequential rules and frequent association rules. Numerous efficient algorithms have been proposed to do the above processes. Frequent pattern mining has been a focused topic in data mining re...

متن کامل

Comparative Analysis of Various Approaches Used in Frequent Pattern Mining

Frequent pattern mining has become an important data mining task and has been a focused theme in data mining research. Frequent patterns are patterns that appear in a data set frequently. Frequent pattern mining searches for recurring relationship in a given data set. Various techniques have been proposed to improve the performance of frequent pattern mining algorithms. This paper presents revi...

متن کامل

A Recent Review on XML data mining and FFP

The goal of data mining is to extract or mine" knowledge from large amounts of data. Emerging technologies of semi-structured data have attracted wide attention of networks, e-commerce, information retrieval and databases.XML has become very popular for representing semi structured data and a standard for data exchange over the web. Mining XML data from the web is becoming increasingly importan...

متن کامل

A Review on Algorithms for Mining Frequent Itemset Over Data Stream

Frequent itemset mining over dynamic data is an important problem in the context of data mining. The two main factors of data stream mining algorithm are memory usage and runtime, since they are limited resources. Mining frequent pattern in data streams, like traditional database and many other types of databases, has been studied popularly in data mining research. Many applications like stock ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013